キーワード検索

※ しぼり込み検索をする場合は、スペース(半角空白文字)で区切って単語を入力して下さい。

リソース情報

タンパク質産生・遺伝子発現用ベクター
  E. coli 利用
  T. thermophilus 利用
  S. pombe 利用
  S. cerevisiae 利用
  哺乳動物細胞発現ベクター

リサーチツール
  ゲノム編集
  蛍光タンパク質
  ルシフェラーゼリソース
  可視化リソース

クローンセット&ゲノムDNA
  Genomic clone
  cDNA clone
  Expression clone
  Libraries
  微生物株由来ゲノムDNA
  マウス系統由来ゲノムDNA

組換えウイルス
  組換えアデノウイルス
  組換えウイルス産生用シャトルベクター

Gene Set Collection
  Autophagy
  Circadian Clock
  Notch Signaling
  Sphingolipid Signaling

検索&リスト
  キーワード検索
  遺伝子の一覧表
  トピックスの一覧表
  おすすめのリソース
  Dnacondaのおすすめ
  由来生物種別リソース
  寄託者リスト

クロンテック社との、 蛍光タンパク質DsRed2とmCherryの学術利用目的の保存と提供に関するLIMITED USE LICENSE締結

BRCからのお知らせ

蛍光タンパク質リソース


Fluorescent protein resource

耐熱性GFP

  • ウミサボテン由来の高い熱安定性を有する GFPです。100℃、10 分の加熱処理後でも充分な蛍光を有しています。
    参考文献. 熱安定性を有する蛍光タンパク質およびそれを利用する方法 特開2014-60947

      25℃ 70℃ 100℃
    A. victoria由来GFP 1072 1087 629
    WT 4770 4229 703
    Th1wt 8067 7236 2162
    Th2wt 7668 7525 3711
    上段、加熱処理前。下段、100℃ 10分加熱後。
    それぞれ室温で観察。
    図の蛍光強度を数値化したもの。

    (注) 画像、ならびにデータは、オリンパス株式会社から提供を受け、編集して掲載。
     

    Catalog no. Name of clone Characteristic
    RDB14364 pCoGFP-Th1wt wild type
    RDB14366 pCoGFP-Th2wt wild type
    RDB14365 pCoGFP-Th1co Optimize codons for transfection into mammalian cells
    RDB14367 pCoGFP-Th2co Optimize codons for transfection into mammalian cells

Non-fluorescent chromoprotein

Protein Resource (cat.num.) Reference
cjBlue (Cnidopus japonicus) cjBlue/pRSETB (RDB15242)
cjBlue Y64L/pRSETB (RDB15243)
Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus.
Chan, M.C. et al., J. Biol. Chem. 281 (49): 37813-37819 (2006). PubMed PMID 17028187.

Fluorescent protein

Protein Resource (cat.num.) Reference
Midoriishi-Cyan (Acropara sp.) MiCy/pRSETB (RDB15239)
mMiCy1/pRSETB (RDB15241)
Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.
Karasawa, S. et al., Biochem. J. 381 (Pt 1): 307-312 (2004). PubMed PMID 15065984.
Azami Green (Galaxeidae sp.) AG/pRSETB (RDB15228)
hmAG407/pRSETB (RDB15229)
hmAG1/pRSETB (RDB15230).
A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling.
Karasawa, S. et al., J. Biol. Chem. 278 (36): 34167-34171 (2003). PubMed PMID 12819206.
Cy11.5 (Aequorea victoria) Cy11.5/pRSETB (RDB15706) Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer.
Shimozono, S. et al., Biochemistry 45 (20): 6267-6271 (2006). PubMed PMID 16700538.
Venus (Aequorea victoria) Venus/pCS2 (RDB15116)
mVenus/pRSETB (RDB15117)
A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
Nagai, T. et al., Nat. Biotechnol. 20 (1): 87-90 (2002). PubMed PMID 11753368.
Venus (Aequorea victoria) cp49Venus (RDB15120)
cp145Venus (RDB15121)
cp157Venus (RDB15122)
cp173Venus (RDB15123)
cp195Venus (RDB15124)
cp229Venus (RDB15125)
Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins.
Nagai, T. et al., Proc. Natl. Acad. Sci. U.S.A. 101 (29): 10554-10559 (2004). PubMed PMID 15247428.
Kusabira Green Orange (Fungia concinna) mK-GO (RDB15244) Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein.
Tsuboi, T. et al., Mol. Biol. Cell. 21 (1): 87-94 (2010). PubMed PMID 19889833.
Kusabira Orange (Fungia concinna) KO1/pRSETB (RDB15311)
hmKO1/pRSETB (RDB15312)
hmKO2/pRSETB (RDB15313)
Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.
Karasawa, S. et al., Biochem. J. 381 (Pt 1): 307-312 (2004). PubMed PMID 15065984.
Kusabira Orange (Fungia concinna) hmKO-K/pRSETB (RDB15314) Improving membrane voltage measurements using FRET with new fluorescent proteins.
Tsutsui, H. et al., Nat. Methods 5 (8): 683-685 (2008). PubMed PMID 18622396.
Keima-red (Montipora. sp) tdKeima/pRSETB (RDB15232)
mKeima/pcDNA3 (RDB15233)
dKeima/pRSETB (RDB15234)
dKeima570/pRSETB (RDB15235)
A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy.
Kogure, T. et al., Nat. Biotechnol. 24 (5): 577-581 (2006). PubMed PMID 16648840.
Keima-red (Montipora. sp) mKeima (h)/pCS2 (RDB15236)
dKeima (h)/pCS2 (RDB15237)
A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery.
Katayama, H. et al., Chem. Biol. 18 (8): 1042-1052 (2011). PubMed PMID 21867919.
UnaG (Anguilla japonica) UnaG/pcDNA3-FLAG (RDB15703)
UnaG/pGEX-2T (RDB15704)
A bilirubin-inducible fluorescent protein from eel muscle.
Kumagai, A. et al., Cell 153 (7): 1602-1611(2013). PubMed PMID 23768684.
UnaG (Anguilla japonica) pET-His UNAG (RDB13504) Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage.
Takeda, T.A. et al., Sci. Rep. 5: 10488 (2015). PubMed PMID 25990790.

Photoswitchable fluorescent protein

Protein Resource (cat.num.) Reference
Dronpa-Green (Echinophyllia sp.) Dronpa/pRSETB (RDB15256)
22G/pRSETB (RDB15255)
Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting.
Ando, R. et al., Science 306 (5700): 1370-1373 (2004). PubMed PMID 15550670.
Dronpa-Green (Echinophyllia sp.) Dronpa2/pRSETB (RDB15257)
Dronpa3/pRSETB (RDB15258)
Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants.
Ando, R. et al., Biophys. J. 92 (12): L97-99 (2007). PubMed PMID 17384059.

Photoconvertible fluorescent protein

Protein Resource (cat.num.) Reference
Kaede (Trachyphyllia geoffroyi) Kaede/pRSETB (RDB15231) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.
Ando, R. et al., Proc. Natl. Acad. Sci. U.S.A. 99 (20): 12651-12656 (2002). PubMed PMID 12271129.
Kikume Green-Red (Favia favus) KikGR/pRSETB (RDB15259) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter.
Tsutsui, H. et al., EMBO Rep. 6 (3): 233-238 (2005). PubMed PMID 15731765.
Kikume Green-Red (Favia favus) mKikGR/pRSETB (RDB15261) mKikGR, a monomeric photoswitchable fluorescent protein.
Habuchi, S. et al., PLoS One 3 (12): e3944 (2008). PubMed PMID 19079591.
h41pkve6 (derivative of Kikume Green-Red) (Favia favus) Xpa (RDB15264)
Xpa H62Q (RDB15265)
A diffraction-quality protein crystal processed as an autophagic cargo.
Tsutsui, H. et al., Mol. Cell 58 (1): 186-193 (2015). PubMed PMID 25773597.

Tools

References


Sensor & Visualization

  • Sensor & Visualization
    • Bilirubin indicator UnaG, BReleaCa
    • cAMP indicator
    • Caspase activity indicator
    • pH sensor
    • Protein concentration in cells
    • RA indicator
    • Voltage indicator
  • Autophagy indicator
    • Chaperone mediated autophagy activity by the GAPDH-HT indicator by Dr. Takahiro Seki’s lab as well as fluorescent protein probes of LC3B accumulation developed by Dr. Noboru Mizushima’s lab, Dr. Itaru Hamachi’s lab and Dr. Keiji Kimura’s lab are available.
  • Calcium-ion sensor
    • Fluorescent protein-based Ca2+ sensors, G-CaMPs, Yellow Cameleons and Pericams developed by Dr. Jin-ichi Nakai’s lab and Dr. Atsushi Miyawaki’s lab, which are composed with calmodulin, fluorescent protein and M13 peptide (CaM binding domain of myosin light chain kinase), are designated to visualize intracellular [Ca2+] dynamics.
    • G-CaMP
    • Pericam
    • Yellow Cameleon
  • Cell cycle indicator Fucci
    • To monitor cell cycle progression in living cells, cell cycle indicator Fucci probes deveoped by Dr. Atsushi Miyawaki’s lab are available.
  • Epigenetics reporter
    • Visualization of histone acetylation: The Histac fluorescent probes deposited by Dr. Kazuki Sasaki allow you monitoring the state of activity of acetylation of histone H4 by fluorescence in living cells.
    • Visualization of methylated DNA: The EGFP-MBD-nls protein recognizes the methylated DNA and you can follow status of the DNA methylation in situ under physiological conditions using the pEGFP-MBD-nls expression clone.
  • Knock in markers with CRISPR/Cas9 genome editing
    • As a part of Auxin Inducible Degron (AID) System clones, Dr. Masato Kanemaki provides a series of knock-in fluorescent and selection markers with CRISPR/Cas9 genome editing.
  • Notch signaling reporter
    • The pRBS-EGFP and RBP-J-Venus expression clones deposited by Dr. Makoto Mark Taketo and Dr. Kenji Tanigaki, respectively, allow you monitoring the state of activation of the Notch signaling by fluorescence in living cells.
  • Organelle marker/subcellular localization
  • Sphingolipid marker
    • Lipid rafts are small lipid domains on the cell membrane and are thought to play an important role in signal transduction, endocytosis and more. We provide fluorescent probes for sphingomyelin and cholesterol lipid domains.
    • Nakanori: sphingomyelin and cholesterol lipid domain (lipid raft)
    • D4 toxin: cholesterol rich domain
    • lysenin: sphingomyelin

Luminescent protein

  • Nano-lantern luminescent and fluorescent protein
    • Nano lantern (NL) consists of Renilla luciferase and adjacent fluorescence protein. The chemiluminescence of the luciferase provides light source for excitation and enables the fluorescence protein to be observed. Three colors of NLs, yellow, cyan and orange, have been developed. NLs do not require external light source and overcome problems such as autofluorescence, phototoxicity, and photobleaching.
  • Higher intensity luciferases having Green-, Yellow- or Red-emission by using D-luciferin
    • These luciferases have at most four-time maximum luminous intensity than that of widely used luciferase of the Photinus pyralis, a common North American firefly. Further more, Green-, Yellow- or Red-emission can be obtained by using D-luciferin as a substrate of each luciferase.
  • AkaLuc luciferase providing brighter and red-shifted luminescence
    • The artificial bioluminescence system AkaBLI enables noninvasive signal observation in deep tissue of living animals. It was developed by Dr. Atsushi Miyawaki and Dr. Satoshi Iwano of the RIKEN Center for Brain Science, and Dr. Shojiro Maki of the University of Electro-Communications. The AkaBLI consists of an artificial substrate AkaLumine with improved tissue permeability and an artificial luciferase Akaluc optimized to AkaLumine. The intensity of the luminescence of AkaBLI system is 100 to 1000 folds brighter than the conventional systems.

 

(GRP0050j 2016.11.16 N.N.)

2019.03.18